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Abstract. China has pledged reduction of carbon dioxide emissions per unit GDP by 60-65% relative to 
2005 levels, and to peak carbon emissions overall by 2030. However, disagreement among available 
inventories makes it difficult for China to track progress toward these goals and evaluate the efficacy of 
control measures. In this study, we demonstrate an approach based on a long time series of surface CO2 
observations to evaluate regional CO2 emissions rates in northern China estimated by three 20 
anthropogenic CO2 inventories—two of which are subsets from global inventories, and one of which is 
China-specific. Comparison of CO2 observations to CO2 predicted from accounting for global 
background concentration and atmospheric mixing of emissions suggests potential biases in the 
inventories.  The period analyzed focuses on the key commitment period for the Paris accords (2005) 
and the Beijing Olympics (2008). Model-observation mismatch in concentration units is translated to 25 
mass units and is displayed against the original inventories in the measurement influence region, largely 
corresponding to northern China. Owing to limitations from having a single site, addressing the 
significant uncertainty stemming from transport error and error in spatial allocation of the emissions 
remains a challenge. Our analysis uses observations to support and justify increased use and 
development of China-specific inventories in tracking China’s progress as a whole towards reducing 30 
emissions. Here we are restricted to a single measurement site; effectively evaluating and constraining 
inventories at relevant spatial scales requires multiple stations of high-temporal resolution observations. 
At this stage and with observational data limitations, we emphasize that this work is intended to be a 
comparison of a subset of anthropogenic CO2 emissions rates from inventories that were readily 
available at the time this research began. For this study’s analysis time period, there was not enough 35 
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spatially distinct observational data to conduct an optimization of the inventories. Rather, our analysis 
provides an important quantification of model-observation mismatch. In the northern China evaluation 
region, emission rates from the China-specific inventory produce the lowest model-observation 
mismatch at all timescales from daily to annual. Additionally, we note that averaged over the study time 
period, the unscaled China-specific inventory has substantially larger annual emissions for China as a 40 
whole (20% higher) and the northern China evaluation region (30%) than the unscaled global 
inventories. Our results lend support the rates and geographic distribution in the China-specific 
inventory. However, exploring this discrepancy for China as a whole requires a denser observational 
network in future efforts to measure and verify CO2 emissions for China both regionally and nationally. 
This study provides a baseline analysis for a small but import region within China, as well a guide for 45 
determining optimal locations for future ground-based measurement sites. 
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1 Introduction 

China’s contribution to world CO2 emissions has been steadily growing, becoming the largest in the 
world in 2006. China has accounted for 60% of the overall growth in global CO2 emissions over the 50 
past 15 years (EIA, 2017). Under the United Nations Framework Convention on Climate Change 
(UNFCCC) 2015 Paris Climate Agreement, China has committed to reduce its carbon intensity (CO2 
emissions per unit GDP) by 60-65% relative to the baseline year of 2005, and to peak carbon emissions 
overall by or before 2030. Demonstration of progress on emissions reduction and evaluation of how 
well specific policies are working is hindered by large uncertainty in the existing Chinese emission 55 
inventories. In 2012 the differences in data reported at national and provincial levels was approximately 
half of China’s 2020 emission reduction goals (EIA, 2017; NDRC, 2015; Guan et al., 2012; Zhao et al., 
2012). Moreover, China is under mounting pressure to address severe regional air pollution events that 
are often associated with CO2 emissions sources—vehicles, power plants and other fossil fuel-burning 
operations. China’s 11th Five Year Plan (11th FYP) of 2006-2010 included aggressive measures to retire 60 
inefficient coal-fired power plants and improve energy efficiency in other industries starting in 2007 
(Zhao et al., 2013; Nielsen & Ho, 2013). A number of pollution control measures that were 
implemented specifically in preparation for the 2008 Beijing Summer Olympics were also largely in 
effect by the end of 2007 (Nielsen & Ho, 2013; Wang et al., 2010).  
 65 
A variety of top-down approaches including inverse analysis (Le Quere et al., 2016) and comparison 
between atmospheric observations and Eulerian forward model predictions (Wang et al., 2013) have 
been used to evaluate and constrain emission estimates, albeit at coarse spatial resolution. As noted by 
Wang et al. (2011) grid-based atmospheric models have difficulty in simulating high-concentration 
pollution plumes at specific receptor sites that are too near the source region. The expanding network of 70 
high accuracy CO2 observations coupled with high spatial resolution transport models is emerging as a 
viable tool for evaluating high resolution emission inventories (e.g. Sargent et al., 2018). In this paper 
we adopt a Lagrangian transport model to simulate atmospheric mixing and transport. Continuous 
observations of CO2 for the period 2005-2009 at Miyun, an atmospheric observatory about 100km NE 
of Beijing provide a top-down constraint for evaluating persistent bias among emissions rates obtained 75 
from a suite of three independent anthropogenic emission inventories that were readily available as 
spatially gridded fluxes.  
 
The three inventories that are evaluated span a range of bottom-up inventory approaches. They are not 
intended to be an exhaustive set, but are examples to demonstrate the capability to identify significant 80 
differences in the ability of different inventories to match the long time series of observations. Emerging 
inventory approaches based on updated (yet non-China-specific) point-source data and satellite-
observations of night lights as a proxy for spatial allocation of energy production (Oda et al., 2018) 
were not available when this analysis began. Two of the inventories, the Emissions Database for Global 
Atmospheric Research (EDGAR; European Commission, 2013) and Carbon Dioxide Information 85 
Analysis Center (CDIAC), are spatial subsets from larger global models of CO2 emissions (PBL, 2013; 
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Andres et al., 2016). They rely on national-level energy statistics and global default values for sectoral 
emission factors, and they estimate activity levels using generalized proxies (e.g. population). The third 
inventory (ZHAO) is specific to China, with greater reliance on energy statistics at provincial and 
individual facility levels as well as emission factors from domestic field studies (Zhao et al., 2012). The 90 
ZHAO inventory was readily accessible at the time of this research and represents increased efforts in 
recent years to incorporate more China-specific data into emissions inventories. Other China-specific 
inventories that have been recently developed but were not readily available at the time of this research 
include the Multi-resolution Emissions Inventory (MEIC, http://www.meicmodel.org/) and an inventory 
by Shan et al., 2016. The primary intent of the comparisons presented here is not to judge specific 95 
inventories, but to demonstrate that even a single site with a long record of high time resolution 
observations can identify major differences among inventories that manifest as biases in the model-data 
comparison. 
 
A study by Turnbull et al. (2011) used weekly flask observations to evaluate a hybrid approach to 100 
inventory construction where CDIAC and EDGAR estimates were spatially allocated to a provincial 
emissions-based grid. However, to our knowledge, none of the truly China-specific CO2 inventories 
have been evaluated with independent high-temporal resolution atmospheric observations. The official 
national total for China’s 2005 CO2 emissions from energy related activities, used as the benchmark for 
the Paris commitment, is approximately 5.4Gton CO2 (NDRC, 2015). ZHAO, EDGAR, and the CDIAC 105 
national total (Boden et al., 2016) report total 2005 energy-related CO2 emissions that are higher by 
31% (7.1Gton), 9%(5.9Gton), and 7%(5.8Gton) respectively. As the official national total is not 
available in a spatially allocated format, it cannot be tested by observations and we refer to it only as a 
benchmark in our analysis. We will show that the China-specific inventory (ZHAO) provides excellent 
agreement with observations while the others do not. The result provides guidance for efforts to assess 110 
China’s emissions at larger scales as well as potential updates for the Paris agreement base year 
emissions. 
 
In order to independently evaluate and scale existing bottom-up estimates of China’s CO2 emissions, we 
employ a top-down approach using five years (January 2005 through December 2009) of continuous 115 
hourly-averaged CO2 observations measured in Miyun, China, at a site 100km northeast of Beijing 
(Wang et al., 2010). Modeled concentrations of CO2 are obtained from convolving hourly CO2 surface 
flux estimates with surface influence maps derived from the Stochastic Time-Inverted Lagrangian 
Transport Model driven with meteorology from the Weather Research and Forecasting Model version 
3.6.1 (WRF-STILT; Lin et al., 2003; Nehrkorn et al., 2010). NOAA CarbonTracker (CT2015) provides 120 
modeled estimates of advected upwind background concentrations of CO2 that are enhanced or depleted 
by processes in the study region. As atmospheric CO2 concentrations are significantly modulated by 
photosynthetic and respiratory fluxes, we additionally prescribe hourly biosphere fluxes of CO2 using 
data-driven outputs from the Vegetation, Photosynthesis, and Respiration Model (VPRM) adapted for 
China (Mahadevan et al., 2012; Dayalu et al., 2018). VPRM provides a functional representation of 125 
biosphere fluxes based on data from remote sensing platforms and eddy flux towers. The WRF-STILT-
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VPRM framework has been successfully adapted for similar emissions evaluation studies in North 
America in regions where biogenic fluxes dominate surface processes (e.g., Sargent et al., 2018; Karion 
et al. 2016; Matross et al., 2008). For the Northern China region, anthropogenic fluxes exceed biogenic 
fluxes for all but the peak of growing season, when they are roughly comparable (Dayalu et al., 2018), 130 
which reduces the magnitude of overall error from incorrect modeling of the biosphere. In contrast to 
extensive measurement networks that exist in North America, continuous high-temporal resolution 
measurements of CO2 necessary for inventory evaluation applications are sparse and very few datasets 
are available in China (Wang et al. 2010). Despite being restricted to a single measurement station, our 
site provides valuable information and constraints on emissions inventories because it receives air at 135 
different times from one of the heaviest emitting regions of China, and clean air at other times.  Our 
inventory scaling is confined to the Northern China region, but this region accounts for 33-41% of 
China’s total annual CO2 emissions from fossil-fuel combustion. Model-observation mismatches can be 
converted from concentration units (ppm) to mass units (Mton CO2) based on the area included in the 
influence footprint. Ultimately, we compare the inventories by quantifying model-observation mismatch 140 
for seasons (using additive mass units) and annually (using scaling factors). The scaling factors are 
resolved at the policy-relevant seasonal and annual timescale. With a single receptor our scaling applies 
to a limited geographical extent (see below) and is limited to a linear scaling (or additive) factor. With 
the available data it is not possible to evaluate any error in spatial allocation of emissions. However, we 
note that the same transport model is applied to all the emission fields. Unresolved transport error 145 
undoubtedly contributes to scatter in the model-data comparison but is unlikely to generate consistent 
biases among the inventories. 
  
Section 2 of this paper describes the observational CO2 record used in this analysis. Section 3 details the 
analysis methods, including WRF-STILT model configuration, a discussion of the main features of the 150 
inventories, error evaluation, and inventory scaling methods. We present the results in Sect. 4, beginning 
with an assessment of seasonality impacts. We then compare inventory performance against 
observations across multiple timescales from hourly to annual. We conclude Sect. 4 with scaling results, 
a brief examination of regional carbon intensity over the study period, and a final summary of the 
caveats and limitations of our study. Concluding remarks are provided in Sect. 5. Additional 155 
methodological details are provided in the accompanying Supplementary Information (SI) and at 
https://doi.org/10.7910/DVN/OJESO0. 

2 CO2 observations 

This study uses five years (2005-2009) of continuous hourly averaged CO2 observations (LI-COR 
Biosciences Li-7000), made at a site in Northern China (Miyun; 40°29'N, 116°46.45'E). The Miyun 160 
receptor is an atmospheric measurement station in a rural site 100 km northeast of the Beijing urban 
center (Fig. SI S2). It was established in 2004 by collaborating researchers at the Harvard China Project 
and operated by researchers at Tsinghua University. The site is strategically located to capture both 
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clean continental background air from the west/northwest and polluted air from the Beijing region to the 
southwest. Miyun is located south of the foothills of the Yan mountains; the region consists of 165 
grasslands, small-scale agriculture intermingled with rural villages and manufacturing complexes, and 
mixed temperate forest. Land use grades from rural to suburban and dense urban to the south towards 
Beijing center and sparsely populated and wooded mountains to the north and west. Further descriptions 
of the site and details of the instrumentation of the CO2 observations are in provided in Wang et al. 
(2010). Average annual data coverage in this time period was 83% (range: 78% to 92%). 170 

3 Methods 

We evaluate the performance of the ZHAO, EDGAR, and CDIAC inventories by modelling five years 
of hourly CO2 observations using the Stochastic Time-Inverted Lagrangian Transport Model (STILT; 
Lin et al., 2003) run in backward time mode driven by high resolution meteorology from the Weather 
Research and Forecasting Model version 3.6.1 (WRF). The WRF-STILT tool models the surfaces that 175 
influenced each measurement hour in the study domain (Figure 1). Hourly vegetation CO2 fluxes are 
prescribed by the VPRM adapted for China (Mahadevan et al., 2008, Dayalu et al., 2018). We 
categorize seasons by months based on regional growing season patterns, which are heavily dominated 
by winter wheat/corn dual-cropping regions in the North China Plain (Dayalu et al. 2018). Winter wheat 
emergence in the spring and corn emergence in later summer shift the seasonal patterns such that 180 
regional seasons are more appropriately represented when months of year are grouped as January, 
February, March (JFM/Winter); April, May, June (AMJ/Spring); July, August, September 
(JAS/Summer); and October, November, December (OND/Fall), respectively. 
 
Ultimately, modeled concentrations of CO2 are obtained from convolving hourly surface flux estimates 185 
with surface influence maps derived from the WRF-STILT framework. NOAA CarbonTracker 
(CT2015) provides estimates of advected upwind background concentrations of CO2 that are enhanced 
or depleted by processes in the study region. Our final modeled-measurement data set is the subset 
consisting of local daytime values (1100h to 1600h) filtered to include only non-missing observations 
and CT2015 background values satisfying true background criteria as described in the SI, Sect. S6. As is 190 
typical for studies of this nature, our analysis focuses on observations during the 1100 to 1600 local 
time period because stronger vertical mixing in the atmosphere reduces the influence of extremely local 
emissions, shallow inversion layers that STILT represents poorly are absent, and vertical concentration 
gradients within the boundary layer are at a minimum (McKain et al., 2015; Sargent et al., 2018).We 
scale inventories based on model-measurement mismatch of this final data subset. Model components 195 
are described individually below.  
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3.1 WRF-STILT Model Configuration 

The WRF-STILT particle transport framework and optimal configuration have been extensively tested 
in several studies using mid-latitude receptors (e.g., Sargent et al., 2018; McKain et al., 2014; Kort et 200 
al., 2013; McKain et al. 2012; Miller et al., 2012). WRF is configured with 41 vertical levels and two-

way nesting in three domains, with the outermost domain covering nearly seven administrative regions 
(Figure 1, Figure 2), defined according to convention in Piao et al. (2009). The domain resolutions from 
coarsest to finest are 27km (d01), 9km (d02), and 3km (d03). Initial and lateral WRF boundary 
conditions are provided by NCEP FNL Operational Model Global Tropospheric Analyses at 1°x1° 205 
spatial 6-hourly temporal resolution (NCEP, 1999). Nudging of fields is implemented in the outer 
domain only, and never within the Planetary Boundary Layer (PBL). WRF output is evaluated against 
publicly accessible 24-hourly averaged observational datasets from the Chinese Meteorological 
Administration (CMA); finer temporal resolution meteorological data is not publicly available. WRF 

Figure 1. Study domain configuration. Miyun receptor and Beijing center are 
located within the innermost domain at a resolution of 3x3km. NOAA 
ESRL/WMO (WMO) flask sampling sites used to evaluate bias in CT2015 
modeled backgrounds are the solid shapes; nearest CT2015 comparison pixel is the 
corresponding unfilled shape.  
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run details are presented in Dayalu (2017) and at http://dx.doi.org/10.7910/DVN/OJESO0. A snapshot 210 
of results from comparison with China Meteorological Administration ground-station measurements is 
presented in SI Sect. S1 and Figures S1-S4. 
 

 
The STILT model is configured in backward time mode, with the particle release point set as the Miyun 215 
sample inlet height of 158m above sea level (masl), corresponding to 6m above ground level (magl). In 
our study, the hilltop site was located in an area where the surrounding land was not very productive or 
intensively cultivated (SI Fig. S2). There is a long history of using short towers in low productivity 
areas for regional studies (e.g. NOAA Earth Systems Research Laboratory—NOAA ESRL Barrow, 
Alaska observatory at 11 magl). In addition, the station is located on a small hilltop, so even though the 220 

Figure 2. 2005-2009 mean seasonal (a-d) and Annual (e) footprint contours, as percentiles of influence 
highlighted by administrative region.  Red, blue, and black contour lines represent 50th, 75th, and 90th 
percentile regions respectively. Stippling represents location of 0.25º x 0.25º footprint and inventory 
gridcell centers, colored by relevant administrative regions. Northern China (red stippling) is the 
administrative region with predominant influence on Miyun observations, followed by Inner Mongolia 
and Northeast China. Southeast and Central China have minimal representation, and only during the 
spring and summer seasons.  
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actual inlet height above ground is low, it has a topographic advantage in that it effectively samples air 
from a greater height relative to the surroundings.  Topographic advantage was exploited in a similar 
manner in Karion et al. (2016) in the context of an Alaskan CO2 study. However, Karion et al. (2016) 
were able to use a suite of additional data to confirm the validity of their assumption including 
comparisons to concurrent aircraft measurements and multiple inlets at 31.7magl, 17.1magl, and 225 
4.9magl. Our study has additional limitations, however, because independent verification from 
concurrent aircraft measurements (for example) or multi-level inlet locations were not available to 
quantify the impact of absolute and relative inlet location on transport uncertainty. Each hourly footprint 
(CO2 concentration attributed to each unit of flux as ppm µmol-1 m2 s) is calculated from releasing 500 
particles until they reach the outer domain boundaries up to seven days back in time. The STILT 0.25º x 230 
0.25º footprint map for each measurement hour enables assessment of regions in the study domain to 
which the receptor is most sensitive. We calculate STILT surface influence at the 50th (L_0.50), 75th 

(L_0.75), and 90th (L_0.90) percentile levels (Figure 2). L_0.90—the region estimated as containing 
90% of surfaces influencing measurement—is selected as the inventory comparison region. Deriving 
correction factors based on integration over the entire L_0.90 region is a more conservative approach 235 
where the model-observation mismatch in mass units is diffused over a larger area. For example, 
corrections based on the smaller L_0.50 region would include larger uncertainties from the diffuse 
influence of emissions outside the L_0.50 region (still 40% of modeled input), yet the model-
observation mismatch would be ascribed to a significantly smaller region.   
 240 
Further model details are available in SI Sect. S2. Complete WRF-STILT settings and STILT footprint 
files are available from http://dx.doi.org/10.7910/DVN/OJESO0. 
 

3.3 Anthropogenic CO2 Emissions Inventories 

ZHAO, EDGAR, and CDIAC report estimates of total annual emissions of CO2 at 0.25º x 0.25º, 0.1º x 245 
0.1º, and 1º x 1º original grid resolutions, respectively. We regridded the EDGAR and CDIAC 
inventories to the 0.25º x 0.25º resolution, using NCAR Command Language version 6.2.1 Earth 
System Modeling Framework conserve regridding algorithm to preserve the integral of emissions 
(Brown et al., 2012). Differences between annual total emissions for EDGAR and CDIAC inventories 
introduced by regridding are smaller than the interannual trends or differences between the inventories 250 
(SI Sect. S3 and Figure S5). We present the main components and defining features of the three 
anthropogenic CO2 inventories below. The ZHAO inventory provides estimates of total annual 
emissions for 2005 through 2009. In addition, spatial location of emissions is given for years 2005 and 
2009 on a 0.25º x 0.25º grid. Using 2005 and 2009 gridded values, we calculate an average percent 
contribution of each grid cell to the total emissions. The average contributions are used as weights to 255 
spatially allocate 2006, 2007, and 2008 total annual emissions. We evaluate and justify this assumption 
in detail in SI Sect. S3 and Figure S6. The ZHAO inventory represents one of the first statistically 
rigorous bottom-up CO2 inventories for China. It relies on provincial- and facility-level data rather than 
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national level data, which has been noted previously as major uncertainty in Chinese emission 
inventories; total CO2 emissions estimates based on provincial data are typically higher than those using 260 
national statistics. Satellite observations of criteria air pollutants (e.g., nitrogen dioxide, which serves as 
a proxy for fossil fuel combustion) show greater agreement with provincial statistics (Zhao et al., 2012). 
The increased use of China-specific emission factors and activity levels based on domestic field studies 
is a shift from other inventories that rely heavily on global averages to estimate processes occurring in 
China.  Despite the increased incorporation of China-specific field data, the largest sources of 265 
uncertainty to the ZHAO inventory are industrial emission factors, and activity levels across all sectors. 
Total uncertainty in the inventory is estimated as -9% to +11%. (Zhao et al., 2012). 
 
The EDGAR emissions database continues to be a major prior in atmospheric studies, and the CO2 
inventory is used to inform key global scientific results considered by the UNFCCC Conference of 270 
Parties. The EDGAR global inventory (atemporal EDGAR v4.2 FT2010 gridded emissions) takes total 
annual estimates of national emissions and downscales emissions to a 0.1º x 0.1º as a function of 
road/shipping networks, population density, energy/manufacturing point sources, and agricultural land. 
Estimates for China are available for all five years as gridded inventories. Reported uncertainties for 
global emissions are ±10%. However, this applies to global averaged uncertainty; the uncertainty for 275 
China is expected to be much higher. 
  
We include the CDIAC inventory here due to its historical prevalence as a benchmark inventory for 
global indicators, including evaluations of carbon intensity provided by the World Bank (World Bank, 
2017). The CDIAC inventory (v2016; https://dx.doi.org/10.3334/CDIAC/ffe.ndp058.2016) allocates 280 
estimates of national emissions to a 1º x 1º grid, primarily distributed according to human population 
density. A thorough assessment of 2s uncertainties in the CDIAC spatial allocation of emissions shows 
considerable spread in regional uncertainties (Andres et al., 2016).  
 
This is not intended as an exhaustive sampling of inventory approaches; however, it is sufficient to 285 
demonstrate the utility of continuous high-accuracy observations as a top-down constraint for 
evaluating emissions estimates. Our inventory list notably does not include emerging spatially resolved 
global inventories (e.g. Open Data Inventory for Anthropogenic Carbon Dioxide, ODIAC) (Oda et al., 
2018) that were not readily available at the time this work was conducted. At 1km x 1km, ODIAC does 
have a high spatial resolution of nightlight proxy-based emissions; while this is a valuable method for 290 
regions in Europe and North America for example, it is less valuable for China where it is analogous to 
the CDIAC population-based proxy. In China, power plant emissions are typically located far from end-
use regions. Furthermore, ODIAC power plant emissions use the 2012 Carbon Monitoring for Action 
(CARMA) database, which notably does not incorporate China-specific power plant data; in these 
instances, CARMA categorizes China’s power plants as “non-disclosed plants” and reports using 295 
estimates derived from statistical models using averaged emissions factors – comparable to methods in 
global inventories subset over China (Ummel, 2012). One of our main goals is to quantify model-
observation mismatch associated with use of China-specific power plant data, and ODIAC does not 
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address that issue particularly differently from other global emissions inventories subset over China. For 
completeness, however, evaluation of inventories like ODIAC over China would provide value as part 300 
of future model-observation comparison efforts. 
 
Based on multi-year means (2005 to 2009) and 95% confidence intervals derived from two-sample t-
tests, we find that within the L_0.90 evaluation region EDGAR and CDIAC report emissions that are 
significantly lower than ZHAO by typically 20% (-24%, -16%) and 36% (-37%, -34%), respectively. 305 
Across China’s administrative regions, the highest discrepancy between the global and regional 
inventories is in Northern China (ZHAO is approximately 30% higher than both EDGAR and CDIAC). 
In addition, Northern China represents one of the administrative regions with the highest CO2 emissions 
density (2.3 to 3.3 kilotonnes of CO2 per square kilometer, compared to the average of 0.7 ktCO2 km-2 
averaged across China) and is therefore a particularly rich spatial subset for emissions inventory 310 
evaluation. A detailed breakdown of emissions by region of China is provided in the SI Table S1. 
Spatial differences are displayed in SI Figure S7. 
 
Previous work has found that temporal variations in CO2 sources can be significant and surface CO2 can 
be perturbed from 1.5-8 ppm within source regions based on time of day and/or day of week, resulting 315 
from a combination of changes in activity patterns as well as synoptic scale transport effects (Nassar et 
al., 2013). However, appropriate data for establishing reasonable temporal scaling factors for data-
sparse regions such as China are difficult to obtain, and as in the case of Nassar et al. (2013) China’s 
activity factors are based on United States activity factors weighted according to China’s EDGARv4.2 
emissions patterns. Applying the weekly and diurnal Nassar et al. (2013) scaling factors did not generate 320 
differences that were statistically significant, suggesting that a more rigorous set of temporal scaling 
factors need to be developed for China. CDIAC does provide monthly gridded inventories with 
seasonality embedded. However, predictions based on that seasonality deviated even further from the 
observations than predictions based on constant annual emissions. In the CDIAC global dataset, the 
seasonality in emissions are based upon generalized global activity factors that are not necessarily 325 
appropriate for estimating seasonality of human activity in China. Therefore, in this study we do not 
explicitly consider diel and seasonal variation in anthropogenic CO2 fluxes.  

3.4 Vegetation Flux Inventory 

We prescribe biotic contributions to the CO2 signal by adapting the VPRM for the study domain to 
generate 0.25º x 0.25º gridded estimates of hourly CO2 net ecosystem exchange (NEE) from 2005 to 330 
2009 (Dayalu et al., 2018). The VPRM is driven by 8-day 500m MODIS surface reflectance values and 
10-minute averages of WRF downward shortwave radiation and surface temperature fields. The VPRM 
parameters are calibrated using eddy flux measurements representing each ecosystem type classified 
according to the International Geosphere-Biosphere Programme (IGBP) scheme. Eddy flux data are 
obtained from FluxNet and ChinaFlux collaborators. The L_0.90 region is dominated by croplands 335 
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(Figure S8), in particular the winter wheat and corn dual-cropping that characterizes the North China 
Plain (Dayalu et al., 2018).  

3.5 Background Concentrations 

Appropriate quantification of background CO2 concentrations (i.e., the CO2 concentration at the lateral 
edges of the model domain and/or prior to interaction with domain surface processes) enables realistic 340 
assessment of the study domain’s contribution to atmospheric CO2 at varying timescales. CT2015 
estimates of CO2 concentrations are provided on a 3º x 2º grid at upwind background locations. 
Background values are selected and corrected for large-scale biases using methodology similar to 
Karion et al. (2016) and is detailed in the SI Sect. S4. The predicted background CO2 is shown together 
with observed CO2 at Miyun for the 1100h-1600h period over the 5-year observational record Figure 3a. 345 
For most of the year the measured CO2 shows large enhancements above background and only in mid-
summer is there a small depletion relative to background values. 

3.6 Quantifying Regional Changes to Background CO2 Concentrations: DCO2  

We define hourly DCO2 as a regional change (enhancement or depletion) imparted to concentrations of 
CO2 advected from the boundary (CO2,CT2015) such that for each observation hour 𝛥𝐶𝑂$,&'(:  350 

	
𝛥𝐶𝑂$,&'( = 	𝐶𝑂$,&'( − 	𝐶𝑂$,,-$./0 

 
For each modeled hour 𝛥𝐶𝑂$,1&2, i and j represent the surface gridcell locations and h represents the 
hour of the 7-day back trajectory:  355 
 

𝛥𝐶𝑂$,1&2 = 	 3 3𝑓𝑜𝑜𝑡78 	× (𝐴𝑁𝑇𝐻78 + 𝑉𝑃𝑅𝑀78
78

D/EFG

.G

) 

 
Note that for the modeled enhancement or depletion, only the VPRM fluxes change hourly; as stated 
previously, the annual anthropogenic fluxes are atemporal. 360 
  
Without a sufficiently dense network of high temporal resolution observations, full-scale inverse 
modeling approach to inventory scaling is inappropriate. At annual timescales, where anthropogenic 
sources dominate the CO2 signal, we compare annual observed and modeled DCO2 to define a mean 
bias and derive a scale factor to quantify the model-observation mismatch based on the slope of the 365 
comparison. At seasonal timescales, we use the difference between observed and modeled DCO2 
normalized by footprint area to obtain a mass flux offset that combines vegetation and anthropogenic 
inventories. With the available data it is not possible to independently evaluate both the anthropogenic 
and biogenic CO2 fluxes. For further details of the scaling technique, please refer to SI Sect. S5. 
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3.6.1 Uncertainty Analysis 370 

The sources of uncertainty in calculations of DCO2 include uncertainty in CT2015 background 
concentrations, CO2 observations, STILT footprints, anthropogenic inventories, and the VPRM 
vegetation inventory. We obtain 95% confidence bounds for DCO2 by following a procedure similar to 
McKain et al. (2015) and Sargent et al. (2018) that involves bootstrapping daily averages of hourly 
afternoon values. For monthly and seasonal timescales, we obtain 95% confidence intervals for DCO2,obs 375 
by performing a bootstrap on probability distributions of errors in both the CT2015 and observations 
1000 times. (See SI Sect. S4 and Figure S9 for details on parameterizing CT2015 uncertainty.) The 
relevant quantiles are obtained from the resulting distribution, and are reported relative to the mean 
DCO2,obs of the original data subset. We follow a slightly modified approach for DCO2,mod in that we 
construct monthly and seasonal residual pools from daily averages of hourly afternoon CO2,mod-CO2,obs. 380 
The residuals—the deviation of the model from the true observed values—represent the total 
uncertainty in the model and therefore aggregates the effects of uncertainty in the footprints, 
background, and inventories. Monthly and seasonal 95% confidence intervals of CO2,mod-CO2,obs are 
then obtained from the distribution of bootstrapping the residual pools 1000 times. We then obtain the 
mean and 95% confidence interval of DCO2,mod by applying the relevant quantiles of the residuals to the 385 
mean DCO2,obs of the original data subset. Similar to Sargent et al. (2018) and McKain et al. (2015), 
distributions of seasonal averages obtained from the above method are used to estimate annual averages 
and 95% confidence intervals. 
 
Sargent et al. (2018) note that applying the same meteorological model over a long time period (15 390 
months) allows for detection of trends in transport uncertainty. In this study, the drawback of a single 
location is offset somewhat by a much longer time series (60 months). Absent a dense network of 
observations, a more sophisticated and extensive error analysis cannot be conducted with meaningful 
results. Turnbull et al. (2011) faced a similar issue, where weekly flask data collected between 2004 and 
2010 from two sites in the NOAA ESRL/WMO sampling network were used to evaluate a bottom-up 395 
fossil inventory based on CDIAC and EDGAR estimates. Turnbull et al. (2011) noted the difficulty in 
assessing the transport error given the paucity of regional observations but also demonstrate the power 
of top-down assessments given improvements in regional transport modeling and density of 
observations.  

4 Results & Discussion 400 

4.1 Impact of Seasonality on Evaluation Region 

As shown in Figure 2, we find strong seasonality in footprint extent and influence region, in agreement 
with previous analysis of Miyun observations by Wang et al. (2010). At annual timescales, the L_0.90 
evaluation region is comparable to the WRF d02 extent. Northern China, including Inner Mongolia, 
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dominate the L_0.90 evaluation region both seasonally and annually. Due to the heavy biosphere 405 
influence in the regional growing season, previous work by Wang et al. (2010) used Miyun non-
growing season measurements of CO2 and carbon monoxide (CO) as an anthropogenic tracer to 
estimate combustion efficiency for China. When compared to bottom-up estimates of national 
combustion efficiency, observations suggested 25% higher combustion efficiency than bottom-up 
estimates of national combustion efficiency; however, Wang et al. (2010) note that the regional 410 
(Northern China) and seasonal (winter) subsets could contribute to such a discrepancy. The seasonality 
exhibited in Figure 2 indeed suggests that combustion efficiency estimates derived from non-growing 
season measurements alone do not represent anthropogenic processes in provinces south of Miyun that 
are visible in the observations primarily during the growing season. Low emitting regions northwest of 
Miyun such as Inner Mongolia dominate site influence in the fall and winter; spring and summer 415 
correspond to seasons where the higher emitting regions in provinces south heavily influence the Miyun 
receptor. However, non-growing season CO2 is influenced by often inefficient district heating in the 
northwest. And, while growing season CO2 is influenced by intense urban activities from Beijing and 
other cities to the south, vegetation draws down both background and locally-observed CO2 
significantly (Figure 3a).   420 

4.2 Unscaled Models: Performance at multiple timescales 

Table 1. Quantification of model-observation mismatch at hourly timescales for all years and pooled by season. 
R2 quantities > 0.2 are in bold. 

  SMA Slope (95%CI) 

  All W (JFM) Sp (AMJ) Su (JAS) F (OND) 
DCO2,ZHAO+VPRM 0.89 (0.88,0.91) 1.0 (1.0,1.1) 0.74 (0.72,0.77) 0.88 (0.84,0.92) 0.92 (0.90,0.95) 
DCO2,EDGAR+VPRM 0.77 (0.76, 0.78) 0.83 (0.81, 0.86) 0.62 (0.60, 0.65) 0.83 (0.80, 0.87) 0.77 (0.74, 0.79) 
DCO2,CDIAC+VPRM 0.63 (0.62, 0.64) 0.63 (0.62, 0.65) 0.48 (0.46, 0.50) 0.79 (0.75, 0.82) 0.56 (0.54, 0.58) 
  R2 
  All W (JFM) Sp (AMJ) Su (JAS) F (OND) 
DCO2,ZHAO+VPRM 0.49 0.56 0.26 0.22 0.56 
DCO2,EDGAR+VPRM 0.47 0.55 0.21 0.18 0.55 
DCO2,CDIAC+VPRM 0.43 0.55 0.17 0.13 0.54 
  Mean Bias (RMSE), ppm 
  All W (JFM) Sp (AMJ) Su (JAS) F (OND) 
DCO2,ZHAO+VPRM 0.32 (9.2) 0.014 (7.9) -0.033 (8.3) 3.1 (11) -1.1 (9.7) 
DCO2,EDGAR+VPRM -2.0 (9.3) -2.2 (7.7) -1.9 (8.7) 0.25 (10.8) -3.4 (10.1) 
DCO2,CDIAC+VPRM -3.3 (9.9) -3.1 (8.1) -3.3 (9.2) -1.1 (11.3) -5.0 (11.1) 
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We evaluate unscaled model performance relative to observations at hourly, seasonal, and annual 425 
timescales. While inventory scaling is performed at the policy relevant scales of seasons and years, 
examination of the models at shorter timescales provides insight into model bias and error aggregation 
at longer timescales. Table 1 summarizes hourly model bias across all years and pooled by season. 
  
All modeled hourly quantities include the same biological component from VPRM, background 430 
concentrations, and transport model such that the only source of variation among models is the 
anthropogenic inventory. With a few exceptions that are discussed in the following sections, 
CO2,EDGAR+VPRM, CO2,CDIAC+VPRM, DCO2,EDGAR+VPRM, and DCO2,CDIAC+VPRM systematically underestimate 
observations as indicated by larger deviation from the 1:1 line in the comparison of modeled to 
measured DCO2 (Table 1, Figure 3b-d.) 435 
 

4.2.1 Hourly 

 
We examine the distribution of modeled-measured residuals at hourly timescales for each anthropogenic 
inventory. While standard deviations are consistent across all models of CO2 flux (1s=9ppm; Figure 440 
3.e-g) DCO2,ZHAO+VPRM exhibits the least bias relative to observations with a mean residual of 
0.32(0.12,0.53) ppm. In contrast, DCO2,EDGAR+VPRM and DCO2,CDIAC+VPRM display significantly greater 
bias by typically underestimating observations by large amounts: -2.0(-1.8,-2.2) ppm and -3.3(-3.1,-3.5) 
ppm, respectively. Here, the 95% confidence intervals are derived from a two-sample t-test. The 
EDGAR and CDIAC underestimation of DCO2 at the hourly scale aggregates at longer timescales of 445 
seasons and years as discussed in the following sections. 

4.2.2 Seasonal 

The seasonally averaged modeled and measured DCO2 values shown in Figure 4 illustrate the overall 
biases for the four inventories. With the exception of the growing season, DCO2,EDGAR+VPRM and 
DCO2,CDIAC+VPRM typically underestimate DCO2,OBS, even within the 95% uncertainty bounds. The 450 
VPRM has a sparse calibration network, leading to an underestimate of regional CO2 drawdown during 
the growing season (Dayalu et al., 2018). Therefore, while DCO2,ZHAO+VPRM agrees within 95% 
confidence bounds with DCO2,OBS during the non-growing seasons, DCO2,ZHAO+VPRM generally 
overestimates CO2 concentrations in the growing season (Figure 4a). DCO2,EDGAR+VPRM (Figure 4b) and 
DCO2,CDIAC+VPRM (Figure 4c) display lower CO2 concentrations and generally result in better agreement 455 
with observations during the growing season than at other times of the year; however, based on our 
analysis at hourly timescales this is an artifact of lower anthropogenic emissions estimates relative to 
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ZHAO that counteracts the VPRM underestimating drawdown. Even during the growing season, 
DCO2,CDIAC+VPRM agrees with observations typically at its upper confidence limits. 

As ZHAO+VPRM demonstrates the least bias relative to observations at hourly and seasonal scales, we 460 
model the relative contributions to the monthly signal during the May through September peak regional 

Figure 3. Hourly (1100 to 1600 Local Time) Modeled and Measured CO2 and DCO2. Measured 
CO2 and modeled CT2015 background concentrations are displayed in (a). Modeled versus 
measured DCO2 for each anthropogenic inventory is shown in (b)-(d), colored by season. 
Histograms of modeled-measured residuals are shown in (e)-(g). The VPRM vegetation 
component is included in all modeled DCO2 values. 

(a) 

(b) (c) (d) 

(e) (f) (g) 
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growing season as defined by Wang et al. (2010). Figure 5 displays the results from partitioning the 
mean monthly DCO2,ZHAO+VPRM signal as a multi-year average into anthropogenic and vegetation 
contributions. While the WRF-STILT-VPRM framework has been successfully adapted for similar CO2 
inventory evaluation studies in North American regions where biogenic fluxes dominate surface 465 
processes (Karion et al., 2016; Matross et al., 2006), Figure 5 shows the relative magnitude of biogenic 
fluxes and anthropogenic emissions in the Northern China region is comparable during peak summer, 
making it difficult to independently constrain them with observational data. As noted in Sect. 3, the 
regional growing season does not have a typical pattern in that peak uptake occurs around July/August 
with the onset of the corn growing season. The atypical lower uptake during June represents the winter 470 
wheat/corn transition period. These results are consistent with the biological component estimated by 
Turnbull et al. (2011). Furthermore, knowledge of the relative contribution of vegetation and 
anthropogenic processes to the CO2 signal during the peak growing season is necessary to interpret 
satellite retrievals of CO2 over the region (Dayalu et al., 2018). 

Figure 4. Modeled and Measured Seasonal DCO2. CT2015 background is subtracted from observations to 
provide observed DCO2 (black line). 95% confidence bounds are derived from bootstrapping hourly 
afternoon concentrations for each season. 

(a) 

(b) 

(c) 
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 475 

 

4.2.3 Annual  

Aggregation of uncertainty and anthropogenic inventory biases at shorter timescales becomes most 
apparent at the annual timescales. For annual budgeting we follow the assumptions of Piao et al. (2009) 
and Jiang et al. (2016) that agricultural systems are in annual carbon balance because crop biomass has 480 
a short residence time. In the absence of data on regional transfer of agricultural products and 
proportion of grains used in situ for livestock vs. human consumption in China this is the most 
conservative assumption to make. Given the dense population in most of Beijing province we expect 
there may be net import of agricultural products from outside the L-90 influence region, which would 
show up as additional respiration not captured by VPRM, but that term will be small relative to the 485 
anthropogenic CO2 (Figure 5) (Dayalu et al., 2018). Therefore, while the VPRM is implicitly included 
in the modeled annual CO2 and DCO2, vegetation carbon stocks (including harvested products and crop 
residues) portions of the influence region with widespread agriculture largely turn over such that only 
the anthropogenic inventories dominate the modeled CO2 signal. We evaluate annual CO2 including 
CT2015 background (Figure 6a-c) and as regional enhancement relative to background (Figure 6d-f).  490 
We show that for all years, CO2,ZHAO+VPRM and DCO2,ZHAO+VPRM agree tightly within 95% uncertainty to 

Figure 5. Modeled mean monthly contribution (ppm) to Miyun CO2 concentrations from vegetation 
(VPRM) and anthropogenic (ZHAO) sources. Enhancement and depletion are relative to advected 
CT2015 background concentrations during the regional growing season (MJJAS), averaged over 2005 to 
2009. Vertical lines represent 1-s of monthly averages (Green: Vegetation; Black: Anthropogenic). 
Negative values represent depletion from CT2015 background; positive values represent enhancement of 
CT2015 background. 

May Jun Jul Aug Sep 
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observations (Figure 6a, Figure 6d). EDGAR+VPRM and CDIAC+VPRM are consistently biased 
significantly lower than observations. 

4.3 Evaluation of inventories at seasonal and annual timescales 

We quantify model-observation mismatch by estimating the additive flux corrections at seasonal 495 
timescales and multiplicative corrections at annual timescales. We emphasize that these “corrections”, 
or scalings, are not optimizations; rather, they simply reflect the extent to which the individual 
anthropogenic+VPRM flux models deviate from the observations. Complete seasonal and annual 
scaling results are provided in the SI Sect. S5, and Tables S2-S3.  

Figure 6. Mean annual CO2 and DCO2 over entire study time period. (a-c) CO2 annual concentration; 
(d-f) DCO2 (regional enhancement, after removal of advected CT2015 background) with bootstrapped 
95% confidence intervals. 

(a) (b) (c) 

(d) (e) (f) 
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 500 

Figure 7. Scaled Seasonal Fluxes in the L_0.90 region (kg CO2 m-2 month-1). Anthropogenic and 
vegetation inventories are scaled together ([ANTH+VPRM_COR]). Black and yellow dashed line is the 
seasonal flux estimated by the original ANTH+VPRM model. All models have the same vegetation 
component (VPRM) and differ only in the anthropogenic inventory source. Shaded green represents 
negative flux (uptake by biosphere). Scaling based on additive corrections; difference among scaled 
inventories is due to differing spatial allocations by anthropogenic inventories. Bootstrapped 95% 
confidence intervals are represented by the black vertical lines.  

[ZHAO+VPRM]_COR [EDGAR+VPRM]_COR [CDIAC+VPRM]_COR ORIGINAL 
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The observational record informing the scaling integrates the biological and anthropogenic signals. At 
the seasonal scale, where biological processes are significant contributors to the signal, we scale the 
sum of the anthropogenic and biological fluxes (Figure 7). Scaled non-growing season flux estimates 

are higher than unscaled values, partially accounting for the VPRM generally underestimating 
ecosystem respiration by an additive offset (Dayalu et al., 2018). As the vegetation component is 505 
controlled across models, the inter-model variance reflects the relative performance of the 
anthropogenic estimates. We find that in the non-growing months the original ZHAO+VPRM inventory 
typically remains within the 95% confidence bounds of the scaled inventory. However, both 
EDGAR+VPRM and CDIAC+VPRM are consistently significantly lower than their scaled 
counterparts. This implies that both EDGAR and CDIAC underestimate anthropogenic emissions, and 510 
that ZHAO estimates are closer to actual emissions. During the growing seasons, however, the 
afternoon vegetation signal is significant and the picture is more complex. In the spring, the CO2 signal 
at Miyun is significantly affected by the North China Plain winter wheat growing season. The effect of 
scaling in the spring from 2005 to 2007 is to increase CO2 emissions with a net positive seasonal flux; 

Figure 8. Annually scaled emissions for 90th percentile of influence region. Scaling is based on 
multiplicative scaling factors. Difference among scaled inventory means is due to differing spatial 
allocations in original anthropogenic inventories. Bootstrapped 95% confidence intervals are 
represented by the black vertical lines. *Note the y-axis origin begins at 1000 Mton CO2 for visual 
clarity. 
 

ZHAO_COR EDGAR_COR CDIAC_COR ORIGINAL 
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however, in 2008 and 2009 we find the net seasonal flux becomes negative such that uptake dominates 515 
emissions. The prior models in all cases predict positive flux. During the summer months, 
ZHAO+VPRM predicts more emissions and/or less uptake relative to EDGAR+VPRM and 
CDIAC+VPRM. Scaling of summertime fluxes serves to significantly increase ZHAO+VPRM uptake 
estimates; the EDGAR+VPRM and CDIAC+VPRM prior estimates are within the 95% confidence 
bounds of the scaling for reasons discussed previously. 520 

 
Table 2. Annual scaling factors (95% CI) and corresponding corrected emissions for L_0.90 inventory evaluation 
region. 

 Scaling Factor (95% CI) Corrected Emissions, MtCO2 
(95% CI) 

Original 
emissions, MtCO2 

20
05

 ZHAO 0.95 (0.84, 1.0) 2800 (2476, 3105) 3015 
EDGAR 1.4 (1.3, 1.6) 3306 (2886, 3683) 2322 
CDIAC 1.7 (1.5, 1.9) 3489 (3017, 3871) 1930 

20
06

 ZHAO 1.0 (0.91, 1.1) 3326 (2972, 3631) 3273 
EDGAR 1.5 (1.3, 1.6) 3751 (3325, 4150) 2586 
CDIAC 1.9 (1.6, 2.0) 3930 (3438, 4338) 2160 

20
07

 ZHAO 0.94 (0.85, 1.0) 3080 (2789, 3324) 3588 
EDGAR 1.4 (1.2, 1.5) 3454 (3096, 3785) 2799 
CDIAC 1.6 (1.5, 1.8) 3180 (2842, 3493) 2260 

20
08

 ZHAO 0.94 (0.82, 1.0) 3422 (3008, 3768) 3685 
EDGAR 1.2 (1.1, 1.4) 3790 (3332, 4207) 3095 
CDIAC 1.7 (1.5, 1.9) 3941 (3461, 4374) 2395 

20
09

 ZHAO 0.96 (0.86, 1.1) 3860 (3474, 4251) 3974 
EDGAR 1.1 (1.0, 1.3) 3518 (3133, 3874) 3298 
CDIAC 1.5 (1.3, 1.7) 3921 (3454, 4330) 2543 

 
 
We report annual scaled anthropogenic inventories in the L_0.90 region in Fig. 8 and Table 2 as 
MtCO2yr-1. As discussed previously, the annual scalings are applied only to the anthropogenic  
inventory, as the signal at the annual timescale is effectively dominated by anthropogenic emissions; net 525 
ecosystem fluxes are expected to be relatively minor at the L_0.90 extent in comparison. For all years, 
the emissions estimated by the original ZHAO inventory lie within the 95% confidence bounds of the 
scaled ZHAO inventory. However, for EDGAR and CDIAC, the original inventories consistently 
underestimate observations. Averaged over the five-year study period, EDGAR and CDIAC lead to 
modeled estimates of CO2 mixing ratios that are typically lower than observations by 30% and 70% 530 
respectively (Fig. 6). Averaged across the five years, this translates to EDGAR and CDIAC being scaled 
relative to their unscaled values in the L_0.90 region by 1.3 and 1.7, respectively (Fig. 8; Table 2). In 
the case of EDGAR, we note a general increase in observational agreement from 2005 to 2009.  
 
 535 

22

https://doi.org/10.5194/acp-2019-677
Preprint. Discussion started: 12 September 2019
c© Author(s) 2019. CC BY 4.0 License.



 

 

 
4.4 Regional Patterns in Emissions from 2005 to 2009 
We examine the statistical significance of the inter-annual observed concentration and enhancement 
differences using a two sample t-test (Table 3). The observed concentrations including advected global 
background (Figure 6, top row) display an overall increasing trend of 1.87 (1.8, 1.9) ppm CO2 yr-1 540 
between 2005 and 2009, in agreement with flask samples obtained from nearby WMO sites between 
2007 and 2010 (Liu et al., 2014). The inter-annual increases are statistically significant (Table 3). 
However, when we remove the modeled background to more closely examine regional patterns that 
would otherwise be drowned out by the global signal, we find that the regional (DCO2) trend does not 
parallel the increasing global trend (Figure 6, bottom row; Table 3). Regionally, the observed 545 
enhancements increase from 2005 to 2006 and plateau in 2007 before decreasing in 2008. 
Enhancements increase again in 2009. 
 
In Figure 9a we estimate Gross Regional Product (GRP) for eight of China’s 34 provincial-level 
administrative units, specifically those encompassed significantly by the L_0.90 influence contour: 550 
Beijing, Tianjin, Henan, Shanxi, Shandong, Hebei, Inner Mongolia, and Liaoning. We suggest that 
industrial energy efficiency improvements beginning in 2007 under the 11th FYP, preparations and 
staging of the 2008 Beijing Summer Olympics, and the global financial crisis in late 2008 followed by a 
large Chinese fiscal stimulus in 2009 are likely contributors to the observed interannual variation in 
regional CO2 emissions (Figure 6d-e) while also compatible with a doubling of GRP from 2005 to 2009 555 
(Figure 6a). In addition, earlier work by Wang et al. (2010) extends Miyun observations of CO2 growth 
rate to all of China and estimates a lower growth rate than previously suggested. However, Figure S6 
suggests local reductions in regions influencing Miyun, possibly in preparation for the Beijing 
Olympics, are partially offset by increases elsewhere. A larger network of sites would be needed to 
quantify this further in order to evaluate the CO2 growth rate for other regions in China and for China as 560 
a whole. 
 
Table 3. Inter-annual observed CO2 and DCO2 differences. Differences are of observations between consecutive 
years. 95% confidence intervals are derived from a two-sample t-test. Italicized entries denote instances where 
the inter-annual difference is not statistically significant (confidence interval includes zero). 565 

 
Time Interval  
(y2-y1) 

CO2,OBS (ppm) 
Mean Difference  
(95% CI) 

DCO2,OBS (ppm) 
Mean Difference   
(95% CI) 

2006-2005 4.86 (4.5, 5.2) 2.08 (1.9, 2.3) 
2007-2006 1.08 (0.69, 1.5) 0.0693 (-0.15, 0.29) 
2008-2007 0.772 (0.37, 1.2) -1.43 (-1.6, -1.2) 
2009-2008 2.60 (2.2, 3.0) 1.12 (0.88, 1.4) 
2009-2005 9.31 (8.9, 9.7) 1.84 (1.6, 2.0) 
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As policy targets are often measured as relative changes over multiple years, an important component of 
emissions inventories is their ability to accurately capture multi-year changes. Observations indicate 
enhancements above background CO2 increased by 28% (22%, 34%) between 2005 and 2009. 570 
ZHAO+VPRM estimates a 20% increase over the same time period while EDGAR+VPRM and 
CDIAC+VPRM estimate 61% and 56% increases respectively.  

4.4 Implications for Assessing National Carbon Emission Targets 

China has pledged a 60-65% reduction in carbon intensity by 2030 and has additionally set a benchmark 
of 40-45% reduction in carbon intensity by 2020, where both targets are relative to the baseline year 575 
2005 (NDRC, 2015; Guan et al., 2014). However, Guan et al. (2014) found that provincial trends in 
carbon intensity can vary significantly from national trends. Using the GRP values shown in Figure 9a, 
we calculate a Northern China regional carbon intensity (Figure 9b). The eight provinces are those that 
are encompassed significantly by the L_0.90 influence contour: Beijing, Henan, Shanxi, Tianjin, 
Shandong, Hebei, Inner Mongolia, and Liaoning. We also estimate an L_0.90 regional carbon intensity 580 
based on the official national energy-related CO2 emissions in NDRC (2015); we scale the national total 
by 39% (35%,42%) which is the mean (range) contribution of the L_0.90 region to the national 
emissions in 2005, averaged across the three unscaled gridded emissions inventories. We emphasize that 
carbon intensity values are inherently uncertain due to complexities in GRP and Gross Domestic 
Product (GDP) calculations such as double-counting due to inter-provincial trade or spatial mismatch 585 
between emissions and economic data. Nevertheless, the analysis provides valuable insight into trends 
rather than precise values.  
 
Over the study time period, the GRP of the L_0.90 region more than doubled (Figure 9a), evidently 
correlated to a significant increase in emissions. Coinciding with the 2008 Beijing Summer Olympics, 590 
the region’s contribution to China’s GDP grew from approximately 13.5% in 2007 to nearly 16% in 
2008, representing a 20% increase, before plateauing into 2009 (Figure 9a). As noted in Guan et al. 
(2014), reductions in carbon emissions intensity can come about via two main pathways: the first, 
within industries, through increased energy efficiency combined with expanded production capacity; the 
second, across the economy, through structural shifts from energy-intensive industrial sectors to service 595 
sectors. The doubling of GRP suggests enlarged production capacity as a driver for regional carbon 
intensity reductions. From 2005 to 2009, carbon intensity for the L_0.90 region decreased by 47% 
(28%,65%), based on a one-sample t-test of pooled emissions intensity changes across scaled 
inventories. Analysis presented by organizations such as the World Bank (World Bank, 2017) suggests 
China’s carbon intensity at the national level decreased by 20% in 2009 relative to 2005. However, we 600 
note that the carbon emissions data source for the World Bank carbon intensity calculations is CDIAC. 
We have shown that at least for the L_0.90/Northern China region, CDIAC emissions lead to significant 
underestimates of observations. Our work here suggests that carbon accounting organizations such as 
the World Bank would benefit from basing their national estimates for China on a variety of inventories, 
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incorporating increasingly available China-specific approaches, EDGAR, and newer global inventories 605 
such as ODIAC (yet to be tested with observations in China).  

Figure. 9. Estimates of Regional Carbon Intensity (kg CO2 USDPPP
-1). (a) PPP GRP by year and as a % of 

China’s national GDP. No PPP GRP values were available for 2006 and 2007; PPP GRP for these years was 
instead calculated by linearly interpolating Nominal GRP/PPP GRP for 2005, 2008, and 2009. (b) Regional 
Carbon intensity using scaled (solid) and unscaled (grey) CO2 estimates. Uncertainty bars are bootstrapped 95% 
confidence intervals. GRP, GDP data from IMF, World Bank, China Statistical Yearbook. Provinces used in GRP 
calculation are those significantly encompassed by L_0.90 contour: Beijing, Henan, Shanxi, Tianjin, Shandong, 
Hebei, Inner Mongolia, and Liaoning. *Estimated by scaling the official national emissions total by the average 
contribution (39%) of L_0.90 region to total emissions in 2005. Uncertainty bars represent the % contribution 
range estimated by ZHAO, EDGAR, and CDIAC in 2005 (35%, 42%). 

(a) 

(b) 

COR 
COR 

COR 

UNCOR* 
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4.5 Summary of study caveats and limitations 

Despite the limitations of having data from a single site, this analysis demonstrates how a long time 
series of continuous observations can identify apparent overall biases in some inventories. Our results, 
while specific to northern China regional emissions in particular, also provide some insight into current 610 
methods of carbon emissions accounting for China as a whole. We do, however, wish to summarize 
multiple caveats and limitations of our study that have been presented throughout the text. First, we 
emphasize that this work is intended to be a comparison of emission rates from a subset of 
anthropogenic CO2 inventories over northern China that were readily available at the time this research 
began and is not intended to be an advocate or criticism of any single published inventory. Rather, we 615 
use a long observational record to examine model-data mismatch in an important carbon emitting region 
where local data is difficult to access and global datasets are forced to rely on the best available public 
data which are not necessarily accurate assumptions of China-specific activity. Second, while we 
recognize the height limitations –and therefore the footprint—of the Miyun receptor its topographic 
advantage along with the low-productivity vicinity, make it similar to other short-tower sites suitable for 620 
regional analysis. In addition, addressing the significant uncertainty stemming from transport error and 
error in spatial allocation of the emissions remains a challenge. Independent verification from 
concurrent aircraft measurements (for example) or multi-level inlet locations were not available to 
quantify the impact of absolute and relative inlet location on transport uncertainty. In this study, the 
drawback of a single location is offset somewhat by the long 60-month timeseries. Absent a dense 625 
network of observations, a more sophisticated and extensive error analysis than what was provided 
cannot be conducted with meaningful results. Finally, we emphasize our implied “corrections”, or 
scalings, of modeled CO2 relative to observations are not optimizations; rather, they simply reflect the 
extent to which the individual anthropogenic+VPRM CO2 flux models deviate from the observations. 
Effectively evaluating and constraining inventory emissions rates at relevant spatial scales requires 630 
multiple stations of high-temporal resolution observations. 

5 Conclusions 

Continuous hourly CO2 observations, significantly influenced by the heavily CO2-emitting Northern 
China region, are used in a top-down evaluation and scaling of three bottom-up CO2 flux inventories. 
We focus on the policy-relevant time interval from 2005 to 2009, noting that 2005 is China’s baseline 635 
year for carbon commitments. The three inventories are distinct in their anthropogenic component, with 
a common biogenic flux component provided by the VPRM, a simple satellite data-driven biosphere 
model. The ZHAO anthropogenic emissions inventory incorporates a regional approach to China’s CO2 
emissions estimation, using activity data at the provincial and facility-levels as well as domestic 
emission factors. The EDGAR and CDIAC emissions inventories incorporate a greater reliance on 640 
global averages and China’s national statistics and international default emission factors, and depend 
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more heavily on proxies (e.g., population) to allocate the emissions geographically. The three 
anthropogenic inventories represent a range of  methods used to estimate emissions for China. 
 
We find strong seasonality in L_0.90 footprint extent and influence region, with the northwest 645 
dominating non-growing season and a more uniform influence in the growing season. The Northern 
China administrative region, excluding Inner Mongolia, dominates the L_0.90 influence region (Figure 
2). Within the L_0.90 inventory evaluation region, EDGAR and CDIAC are—on average across the 
five study years—lower than ZHAO by 20% and 36% respectively. Across administrative regions, the 
highest discrepancy between the global and regional inventories is in Northern China, where the ZHAO 650 
inventory estimates emissions that are on average 30% higher than both EDGAR and CDIAC (SI, Table 
S1).   
 
We find the ZHAO+VPRM inventory generally agrees very closely with observations, often 
significantly better than the nationally referenced inventories at all timescales (hourly through 655 
annually), with the exception of the peak growing season. During the peak growing season, the regional 
enhancement to background CO2 concentrations is modeled as approximately zero, due to an 
agriculturally dominated vegetation signal that is equal in magnitude and opposite in sign to the 
anthropogenic signal (Dayalu et al., 2018). While this agrees with previous work by Turnbull et al. 
(2011), in both that study and the present study the sparse data prevents a more conclusive statement 660 
about anthropogenic inventory performance during the regional growing season. At annual timescales, 
the anthropogenic signal dominates and we find that emission rates from EDGAR and CDIAC lead to 
underestimated emissions in the Northern China region by an average of 30% and 70% respectively, 
averaged across all study years. We note that the discrepancy between the EDGAR-based timeseries and 
the observations generally decreases over the five-year study period. In contrast, emission rates from the 665 
ZHAO inventory gives a priori results very close to observations throughout and is not significantly 
affected by the scaling: the error bars for the scaled estimates consistently include the original estimate. 
Note that the EDGAR and CDIAC inventories can differ from -10% to -20% relative to ZHAO in their 
national emissions totals (Table S1). The inventories evaluated here exhibit distinct differences in their 
ability to match observations. However, observational data from a network of sites strategically located 670 
in and around the eastern half of China would be required to (1) examine whether differences in spatial 
allocation approaches contribute to differences among the inventories and (2) conduct actual 
optimizations of the inventories.  
 
In situ CO2 observations interpreted within a high-resolution model framework such as described in this 675 
study provide a powerful constraint to test and correct spatially explicit inventories. The single station 
available for the 2005-2009 period was strategically located to provide information on one of the 
highest CO2 emitting regions of China. Within that limitation, the observations provide strong evidence 
supporting the use of China-specific methods, such as those employed in ZHAO, for China’s CO2 
emissions inventory derivation. Absent data from a dense network of high temporal resolution 680 
measurements, there will constantly be a tradeoff between drawing conclusions using low-temporal 
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resolution flask measurements from a few sites and continuous data from a single location. In particular, 
access to a spatially dense network of measurements will allow for a sophisticated error analysis that 
can more readily assess uncertainty in key model components such as transport, flux fields, and 
background concentrations. However, despite the dearth of observational data, past studies (e.g., 685 
Turnbull et al., 2011) and studies such as this one provide key information that is necessary to guide and 
motivate more extensive future studies. Future efforts will benefit substantially from incorporating 
newly available information from column-average CO2 concentrations acquired by orbiting instruments 
or ground-based spectrometers to increase observational coverage. A number of existing (OCO-2, OCO-
3) and planned satellite missions will significantly reduce the observational gap in China, though 690 
surface observations provide additional constraints and a link to absolute calibration scales. A denser 
network of CO2 measurement stations in China is required as a component for effective monitoring, 
reporting, and verification of regional and national inventories. The results of this research have broad 
implications toward designing future analyses in general as more observations of China’s CO2 continue 
to become available, particularly in the era of increased CO2 satellite coverage. 695 
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Code and Data Availability  
 
Code and data are available through the Harvard Dataverse at https://doi.org/10.7910/DVN/OJESO0. 
The code and data supplement includes observational and modeled CO2 time series, WRF and STILT 700 
parameter files, and STILT footprint files. 
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